Bibliometric and visual analyses of trends in the field of T cell exhaustion research: Findings from 2000 to 2022

Author:

Liu Ziling123,Wan Huan4,Tan Yao1,Li Deshuang1,Huang Jianguo1,Zhang Chuanhe1,Liu Fangyuan4,Qin Bo13ORCID

Affiliation:

1. Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China

2. Institute of Biopharmaceutics and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, China

3. Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China

4. The Second Clinical Medical College, Jinan University, Shenzhen, China

Abstract

Background T cell exhaustion refers to a state wherein T cells become less functional as a result of their prolonged exposure to cognate antigens. A wealth of T cell exhaustion-focused research has been conducted in recent decades, transforming the current understanding of this biologically relevant process. However, there have not been any comprehensive bibliometric analyses to date focused on clarifying the T cell exhaustion-related research landscape. Here, a bibliometric analysis was thus conducted with the goal of better elucidating the current state of knowledge and emerging research hotspots in this field. Methods The Web of Science Core Collection was searched for articles and reviews related to T cell exhaustion, with the CiteSpace and VOSviewer programs then being employed to analyze the countries, institutions, authors, references, and keywords associated with studies in this research space. Results In total, 2676 studies were incorporated in this analysis, highlighting progressive annual increases in the number of T cell exhaustion-focused publications over the study period. These publications were affiliated with 3117 institutions in 85 countries, with the USA and China being the largest contributors to the field. Of the 18,032 authors associated with these publications, E. John Wherry exhibited the highest publication count and the greatest citation frequency. Keyword analyses indicated that immunotherapy, T cell exhaustion, and PD-1 are the dominant foci for T cell exhaustion-related research. Conclusion These findings highlight the importance of collaborations among institutions and nations in order to further propel novel studies of T cell exhaustion. Efforts to unravel the signal transduction and transcriptional mechanisms underlying the onset of T cell exhaustion were also identified as an emerging hotspot in this field. Ultimately, these results support the pivotal status of T cell exhaustion research as a key direction for immunotherapeutic research and development efforts in the coming years.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Science Research Foundation of Aier Eye Hospital

Publisher

SAGE Publications

Subject

Pharmacology,Immunology,Immunology and Allergy,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3