Prediction of major adverse cardiac, cerebrovascular events in patients with diabetes after acute coronary syndrome

Author:

Baluja Aurora123ORCID,Rodríguez-Mañero Moisés134ORCID,Cordero Alberto45,Kreidieh Bahij6,Iglesias-Alvarez Diego1,García-Acuña Jose M134,Martínez-Gómez Alvaro1,Agra-Bermejo Rosa134,Alvarez-Rodríguez Leyre1,Abou-Jokh Charigan1,López-Ratón Mónica7,Gude-Sampedro Francisco8,Alvarez-Escudero Julián23,González-Juanatey Jose R134

Affiliation:

1. Cardiology Department, Complejo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain

2. Critical Patient Translational Research Group, Department of Anesthesiology, Intensive Care and Pain Management, Complejo Hospitalario Universitario, Santiago de Compostela, Spain

3. Instituto de Investigación Sanitaria (IDIS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain

4. Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV CB16/11/00226-CB16/11/00420), Madrid, Spain

5. Cardiology Department, Hospital Universitario de San Juan. Alicante, Spain

6. University of Miami/JFK Medical Center Palm Beach Regional GME Consortium, Atlantis, FL, USA

7. Board of Education, Galician Government, Xunta de Galicia, Spain

8. Clinical Epidemiology Unit, University Clinical Hospital of Santiago, Santiago de Compostela, Spain

Abstract

Background and objectives: The risk of major adverse cardiac and cerebrovascular events following acute coronary syndrome is increased in people with diabetes. Predicting out-of-hospital outcomes upon follow-up remains difficult, and no simple, well-validated tools exist for this population at present. We aim to evaluate several factors in a competing risks model for actionable evaluation of the incidence of major adverse cardiac and cerebrovascular events in diabetic outpatients following acute coronary syndrome. Methods: Retrospective analysis of consecutive patients admitted for acute coronary syndrome in two centres. A Fine–Gray competing risks model was adjusted to predict major adverse cardiac and cerebrovascular events and all-cause mortality. A point-based score is presented that is based on this model. Results: Out of the 1400 patients, there were 783 (55.9%) with at least one major adverse cardiac and cerebrovascular event (417 deaths). Of them, 143 deaths were due to non-major adverse cardiac and cerebrovascular events. Predictive Fine–Gray models show that the ‘PG-HACKER’ risk factors (gender, age, peripheral arterial disease, left ventricle function, previous congestive heart failure, Killip class and optimal medical therapy) were associated to major adverse cardiac and cerebrovascular events. Conclusion: The PG-HACKER score is a simple and effective tool that is freely available and easily accessible to physicians and patients. The PG-HACKER score can predict major adverse cardiac and cerebrovascular events following acute coronary syndrome in patients with diabetes.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3