Accuracy of a Novel Noninvasive Transdermal Continuous Glucose Monitor in Critically Ill Patients

Author:

Saur Nicole M.1,England Michael R.1,Menzie Wayne2,Melanson Ann Marie1,Trieu My-Quyen2,Berlin Jason2,Hurley James2,Krystyniak Keith2,Kongable Gail L.3,Nasraway Stanley A.1

Affiliation:

1. Departments of Surgery/Anesthesiology, Tufts Medical Center and Tufts University School of Medicine, Boston, MA, USA

2. Echo Therapeutics, Inc, Philadelphia, PA, USA

3. The Epsilon Group, Charlottesville, VA, USA

Abstract

Background: Stress hyperglycemia and hypoglycemia are associated with increased morbidity and mortality in the critically ill. Intermittent, random blood glucose (BG) measurements can miss episodes of hyper- and hypoglycemia. The purpose of this study was to determine the accuracy of the Symphony® continuous glucose monitor (CGM) in critically ill cardiac surgery patients. Methods: Fifteen adult cardiac surgery patients were evaluated immediately postoperatively in the intensive care unit. Prelude® SkinPrep prepared the skin and a sensor was applied to 2 test sites on each subject to monitor interstitial fluid glucose. Reference BG was sampled at 30- to 60-minute intervals. The skin at the test sites was inspected for adverse effects. Accuracy of the retrospectively analyzed CGM data relative to reference BG values was determined using continuous glucose-error grid analysis (CG-EGA) and mean absolute relative difference (MARD). Results: Using 570 Symphony CGM glucose readings paired with reference BG measurements, CG-EGA showed that 99.6% of the readings were within zones A and B. BG measurements ranged from 73 to 251 mg/dL. The MARD was 12.3%. No adverse device effects were reported. Conclusions: The Symphony CGM system is able to safely, continuously, and noninvasively monitor glucose in the transdermal interstitial fluid of cardiac surgery intensive care unit patients with accuracy similar to that reported with other CGM systems. Future versions of the system will need real-time data analysis, fast warm-up, and less frequent calibrations to be used in the clinical setting.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3