Blood-Induced Interference of Glucose Sensor Function in Vitro: Implications for in Vivo Sensor Function

Author:

Klueh Ulrike12,Liu Zenghe3,Ouyang Tianmei3,Cho Brian3,Feldman Ben3,Henning Timothy P.3,Kreutzer Don12

Affiliation:

1. Center for Molecular Tissue Engineering, University of Connecticut, Farmington, Connecticut

2. Department of Surgery, School of Medicine, University of Connecticut, Farmington, Connecticut

3. Abbott Diabetes Care, Alameda, California

Abstract

Background: Although tissue hemorrhages, with resulting blood clots, are associated with glucose sensor implantation, virtually nothing known is about the impact of red blood cells and red blood cell clots on sensor function in vitro or in vivo. In these studies, we tested the hypothesis that blood can directly interfere with glucose sensor function in vitro. Methods: To test this hypothesis, heparinized human whole blood (HWB) and nonheparinized human whole blood (WB) were obtained from normal individuals. Aliquots of HWB and WB samples were also fractionated into plasma, serum, and total leukocyte (TL) components. Resulting HWB, WB, and WB components were incubated in vitro with an amperometric glucose sensor for 24 hours at 37°C. During incubation, blood glucose levels were determined periodically using a glucose monitor, and glucose sensor function (GSF) was monitored continuously as nanoampere output. Results: Heparinized human whole blood had no significant effect on GSF in vitro, nor did TL, serum, or plasma-derived clots from WB. Sensors incubated with WB displayed a rapid signal loss associated with clot formation at 37°C. The half-life was 0.8 ± 0.2 hours (n = 16) for sensors incubated with WB compared to 3.2 ± 0.5 (n = 12) for sensors incubated with HWB with a blood glucose level of approximately 100 mg/dl. Conclusion: These studies demonstrated that human whole blood interfered with GSF in vitro. These studies further demonstrated that this interference was related to blood clot formation, as HWB, serum, plasma-derived clots, or TL did not interfere with GSF in vitro in the same way that WB did. These in vitro studies supported the concept that the formation of blood clots at sites of glucose sensor implantation could have a negative impact on GSF in vivo.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3