Combining Information of Autonomic Modulation and CGM Measurements Enables Prediction and Improves Detection of Spontaneous Hypoglycemic Events

Author:

Cichosz Simon Lebech12,Frystyk Jan1,Tarnow Lise3,Fleischer Jesper1

Affiliation:

1. Department of Endocrinology and Internal Medicine and Medical Research Laboratory, Aarhus University Hospital, Denmark

2. Department of Health Science and Technology, Aalborg University, Denmark

3. Steno Diabetes Center, Department of Clinical Epidemiology, Aarhus University and Nordsjaellands Hospitaler Hilleroed, Denmark

Abstract

Background: We have previously tested, in a laboratory setting, a novel algorithm that enables prediction of hypoglycemia. The algorithm integrates information of autonomic modulation, based on heart rate variability (HRV), and data based on a continuous glucose monitoring (CGM) device. Now, we investigate whether the algorithm is suitable for prediction of hypoglycemia and for improvement of hypoglycemic detection during normal daily activities. Methods: Twenty-one adults (13 men) with T1D prone to hypoglycemia were recruited and monitored with CGM and a Holter device while they performed normal daily activities. We used our developed algorithm (a pattern classification method) to predict spontaneous hypoglycemia based on CGM and HRV. We compared 3 different models; (i) a model containing raw data from the CGM device; (ii) a CGM* model containing data derived from the CGM device signal; and (iii) a CGM+HRV model-combining model (ii) with HRV data. Results: A total of 12 hypoglycemic events (glucose levels < 3.9 mmol/L, 70 mg/dL) and 237 euglycemic measurements were included. For a 20-minute prediction, model (i) resulted in a ROC AUC of 0.69. If a high sensitivity of 100% was chosen, the corresponding specificity was 69%. (ii) The CGM* model yielded a ROC AUC of 0.92 with a corresponding sensitivity of 100% and specificity of 71%. (iii) The CGM+HRV model yielded a ROC AUC of 0.96 with a corresponding sensitivity of 100% and specificity of 91%. Conclusions: Data shows that adding information of autonomic modulation to CGM measurements enables prediction and improves the detection of hypoglycemia.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3