Significant Insulin Dose Errors May Occur if Blood Glucose Results are Obtained from Miscoded Meters

Author:

Raine Charles H.1,Schrock Linda E.2,Edelman Steven V.3,Mudaliar Sunder Raj D.3,Zhong Weiping4,Proud Lois J.4,Parkes Joan Lee4

Affiliation:

1. Diabetes Control Center, Orangeburg, South Carolina

2. Outpatient Diabetes Education Program, Elkhart General Hospital, Elkhart, Indiana

3. VA San Diego Healthcare System and University of California, San Diego, San Diego, California

4. Bayer HealthCare LLC, Elkhart, Indiana

Abstract

Objective: The objective of this study was to determine inaccuracies of miscoded blood glucose (BG) meters and potential errors in insulin dose based on values from these meters. Research Design: Fasting diabetic subjects at three clinical centers participated in a 2-hour meal tolerance test. At various times subjects' blood was tested on five BG meters and on a Yellow Springs Instruments laboratory glucose analyzer. Some meters were purposely miscoded. Using the BG values from these meters, along with three insulin dose algorithms, Monte Carlo simulations were conducted to generate ideal and simulated-meter glucose values and subsequent probability of insulin dose errors based on normal and empirical distribution assumptions. Results: Maximal median percentage biases of miscoded meters were +29% and −37%, while maximal median percentage biases of correctly coded meters were only +0.64% and −10.45% ( p = 0.000, χ2 test, df = 1). Using the low-dose algorithm and the normal distribution assumption, the combined data showed that the probability of insulin error of ±1U, ±2, ±3, ±4, and ±5U for miscoded meters could be as high as 49.6, 50.0, 22.3, 1.4, and 0.04%, respectively. This is compared to manually, correctly coded meters where the probability of error of ±1, ±2, and ±3U could be as high as 44.6, 7.1, and 0.49%, respectively. There was no instance of a ±4 or ±5U insulin dose error with a manually, correctly coded meter. For autocoded meters, the probability of ±1 and ±2U could be as high as 35.4 and 1.4%, respectively. For autocoded meters there were no calculated insulin dose errors above ±2U. The probability of insulin misdosing with either manually, correctly coded or autocoded meters was significantly lower than that with miscoded meters. Results using empirical distributions showed similar trends of insulin dose errors. Conclusions: Blood glucose meter coding errors may result in significant insulin dosing errors. To avoid error, patients should be instructed to code their meters correctly or be advised to use an autocoded meter that showed superior performance over manually, correctly coded meters in this study.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Bioengineering,Endocrinology, Diabetes and Metabolism,Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3