Development of a Real-time Force-based Algorithm for Infusion Failure Detection

Author:

Blanco Luis E.1ORCID,Wilcox John H.1ORCID,Hughes Michael S.2ORCID,Lal Rayhan A.2ORCID

Affiliation:

1. Diatech Diabetes, Inc., Memphis, TN, USA

2. Stanford University, Stanford, CA, USA

Abstract

Background: Continuous subcutaneous insulin infusion (CSII) is a common treatment option for people with diabetes (PWD), but insulin infusion failures pose a significant challenge, leading to hyperglycemia, diabetes burnout, and increased hospitalizations. Current CSII pumps’ occlusion alarm systems are limited in detecting infusion failures; therefore, a more effective detection method is needed. Methods: We conducted five preclinical animal studies to collect data on infusion failures, utilizing both insulin and non-insulin boluses. Data were captured using in-line pressure and flow rate sensors, with additional force data from CSII pumps’ onboard sensors in one study. A novel classifier model was developed using this dataset, aimed at detecting different types of infusion failures through direct utilization of force sensor data. Performance was compared against various occlusion alarm thresholds from commercially available CSII pumps. Results: The testing dataset included 251 boluses. The Bagging classifier model showed the highest performance metrics among the models tested, exhibiting high accuracy (96%), sensitivity (94%), and specificity (98%), with lower false-positive and false-negative rate compared with traditional occlusion alarm pressure thresholds. Conclusions: Our study developed a novel non-threshold classifier that outperforms current occlusion alarm systems in CSII pumps in detecting infusion failures. This advancement has the potential to reduce the risk of hyperglycemia and hospitalizations due to undetected infusion failures, offering a more reliable and effective CSII therapy for PWD. Further studies involving human participants are recommended to validate these findings and assess the classifier’s performance in a real-world setting.

Funder

The Consortium for Technology & Innovation in Pediatrics

National Institute of Diabetes and Digestive and Kidney Diseases

Ypsomed AG

JDRF

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3