Comparison of enhanced geothermal system with water and CO2 as working fluid: A case study in Zhacanggou, Northeastern Tibet, China

Author:

Liu Yanguang1ORCID,Wang Guiling1,Yue Gaofan1,Zhang Wei1,Zhu Xi1,Zhang Qinglian1

Affiliation:

1. Institute of Hydrogeology and Environmental Geology Chinese Academy of Geological Sciences

Abstract

In the study, we analyzed the hot dry rock geothermal field of the Guide Basin in Qinghai Province, China. We used T2Well software—a coupled wellbore–reservoir simulator—to build a “wellbore–reservoir” coupled model with a “three-spot” well pattern (one injection and two production wells). We simulated several fixed flow rate cases in which water or CO2 is injected. The objectives of our present work are (1) to investigate the fluid flow and thermal processes of water circulating at well bottoms, wellbores, and wellheads; (2) to identify the changing parameters at all physical fields; (3) to understand the influence of injection rates on heat extraction; and (4) to measure the maximum heat extraction capacity of the Guide area. Water extracts more heat than CO2 at the same flow rate. However, water consumes more pressure in reservoir, and its pressure decreases more quickly as the flow rate increases. In contrast, CO2 is in a sense a better working fluid. CO2 consumes less pressure when it flows and can circulate automatically due to the siphon phenomenon. In this way, a lower injection pressure is required in a higher CO2 flow rate case. The density of CO2 is sensitive to both temperature and pressure and vice versa. Inside a wellbore, such interactions are extremely complicated. When the fluid rate is slow, a system could operate for 30 years and remain stable, and there is only a small decrease in temperature. However, with higher flow rate scenarios—namely 50, 75, and 100 kg/s—the reservoir will exhibit greater heat loss. The reservoir’s production temperature and extraction efficiency will drop dramatically. Therefore, for the Guide area, if a “three-spot” well pattern is used for geothermal extraction either with water or CO2 as the working fluid, the most appropriate flow rate is 50 kg/s.

Funder

National Science Foundation for Young Scientists of China

Chinese Academy of Geological Sciences Fund

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3