Evaluation of Slope Stability within the Influence of Mining Based on Combined Weighting and Finite Cloud Model

Author:

Chen Hongkai1,Guo Qingbiao1ORCID,Wang Liang1,Meng Xiangrui2

Affiliation:

1. School of Spatial Informatics and Geomatics Engineering, Anhui University of Science and Technology, Huainan, China

2. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Huainan, China

Abstract

Coal mining under slopes often leads to slope instability, resulting in substantial economic losses and human casualties. Therefore, constructing a scientific and practical slope stability evaluation model for slope disaster prevention and control is of great significance. In this study, seven evaluation indexes were selected, and their influence mechanisms were analyzed to establish a system of evaluation indexes for the stability of mining slopes in Xing County, Shanxi Province, China. A new evaluation model for the stability of mining slopes was established based on the interval analytic hierarchy process (IAHP) to determine the subjective weights of the indexes and the improved CRITIC method to determine the objective weights of the indexes, which circumvented the limitations of subjective or objective weights by combining the minimum discriminating information. The model was applied to the mining slopes in Xing County, Shanxi Province, and the results showed that slopes A, C, D and E were in an unstable state, slope B was in an understable state after mining. Finally, the accuracy of the evaluation results was verified through field surveys. The model has engineering application value in predicting the stability of mining slopes and can provide theoretical suggestions for later slope management to ensure the safe production of coal mines.

Funder

Key Research and Development Project of Anhui Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3