Affiliation:
1. China School of Energy Resources, China University of Geosciences (Beijing), Beijing, China
2. Beijing Key Laboratory of Unconventional Natural Gas Geology Evaluation and Development Engineering, Beijing, China
3. Research Institute of Petroleum Exploration and Development of CNPC, Beijing, China
Abstract
This paper first describes a mathematical model of a vertical fracture with constant conductivity in three crossflow rectangular layers. Then, three forms of vertical fracture (linear, logarithmic, and exponential variations) with varying conductivity are introduced to this mathematical model. A novel mathematical model and its semi-analytical solution of a vertical fracture with varying conductivity intercepting a three-separate-layered crossflow reservoir is developed and executed. Results show that the transient pressures are divided into three stages: the linear-flow phase, the medium unsteady-flow stage, and the later pseudo-steady-flow phase. The parameters of the fracture, reservoir, and the multi-permeability medium directly influence the direction, transition, and shape of the transient pressure. Meanwhile, the fracture conductivity is higher near the well bottom and is smaller at the tip of the fracture for the varying conductivity. Therefore, there are many more differences between varying conductivity and constant conductivity. Varying conductivity can correctly reflect the flow characteristics of a vertical fractured well during well-test analysis.
Funder
the National Natural Science Foundation of China
Science and Technology Special Funds of China
Fundamental Research Funds for the Central Universities of China
Subject
Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献