Pressure transient analysis of a vertical well with multiple etched fractures in carbonate reservoirs

Author:

Luo Erhui1ORCID,Hu Yongle1,Fan Zifei1,Zhao Wenqi1,Wang Chenggang1,Sun Meng1,Li Xuanran1

Affiliation:

1. PetroChina Research Institute of Petroleum Exploration & Development, Beijing, China

Abstract

Acid fracturing has been widely used as an industry practice in explored and developed carbonate reservoirs. It is very important to understand responses of reservoirs and improve production performance of a well due to the presence of fracture networks by stimulation treatments. Pressure transient analysis is one of the most effective diagnostic techniques available to enhance our understanding of natural and artificial-etched fracture behavior. This work presented a novel mathematical model for unsteady state flow of naturally fractured porous medium into multiple etched fractures intersecting a vertical well, and three different geometric shapes of matrix blocks containing slabs, cylinders and spheres were considered. The new solution was derived by using the Laplace transformation and the point source function integral approach. The polar coordinate transformation was used to deal with the radial distribution of arbitrary fracture number and angle. Then the model was validated by comparison with three published cases. Finally, type curves were plotted to identify flow regimes: linear flow, transitional flow, pseudoradial flow, and boundary dominant flow if the closed or constant pressure boundary exists. Furthermore, sensitivity analysis was investigated. The results showed that the acid-etched fracture parameters containing fracture number, fracture distribution and conductivity had a significant impact on pressure behavior at early times. However, natural fracture storativity coefficient and interporosity flow parameter mainly affected the transitional flow at intermediate times. Moreover, the shape of matrix blocks had a little influence on transient responses at intermediate times. It is found that multiple etched fractures existing near the wellbore consume less pressure drop and increase the productivity of a well as a whole.

Funder

the Important National Science and Technology Specific Projects of China

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3