Effect of thermal parameters on heat storage and release performance of phase change material composite wall

Author:

Zhang Feng1ORCID,Jiang Fengqi1,Xu Zhanyang1,Yu Wei1,Bai Yikui1,Liu Wenhe1

Affiliation:

1. Shenyang Agricultural University, Shenyang, China

Abstract

In order to enlarge and improve the application of phase changing materials (PCM) composite wall in Chinese solar greenhouse (CSG), the effect of thermal parameters on heat storage and release performance of PCM composite wall were systematically and scientifically investigated by available CFD code of commercial software ANSYS-Fluent, which was almost determined by the parameters such as density, thermal conductive, latent heat fusion and specific heat capacity. The numerical simulation was reasonably validated by the experimental result under the same condition, which was conducted by error analysis of interval analysis (IA) method. The result is shown that IA result between numerical simulation and experiment is 0.96, while the numerical simulation of PCM composite wall is significantly accurate and reliable. The maximum temperature of the center point in interior surface is completely dependent on the contrary tendency changing of thermal parameters at heating time, of which is directly proportional to thermal parameters changing at cooling time, except the specific heat capacity. While only the thermal conductivity increasing is benefit for increasing interior surface temperature of PCM composite wall at final cooling time. The effect of solely thermal parameter on the heat storage and release performance changing of PCM composite wall is from strength to weaken: density changing ([Formula: see text]) > thermal conductivity changing ([Formula: see text]) > latent heat fusion of liquid changing ([Formula: see text]) > specific heat capacity changing ([Formula: see text]).

Funder

China Postdoctoral Science Foundation Funded Project

Key Research and Development Projects of Liaoning Province

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3