Short-term photovoltaic power prediction based on fractional Levy stable motion

Author:

Zheng Hongqing12ORCID,Song Wanqing13,Cheng Wei1,Cattani Carlo4,Kudreyko Aleksey5

Affiliation:

1. School of Electronic and Electrical Engineering, Minnan University of Science and Technology, Fujian Quanzhou, China

2. Key Laboratory of Industrial Automation Control Technology and Application of Fujian Higher Education, Quanzhou, China

3. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, China

4. Engineering School, DEIM, University of Tuscia, Viterbo, Italy

5. Department of General Physics, Ufa University of Science and Technology, Ufa, Russia

Abstract

Accurate prediction of photovoltaic (PV) power generation is the key to daily dispatch management and safe and stable grid operation. In order to improve the accuracy of the prediction, a finite iterative PV power prediction model with long range dependence (LRD) characteristics was developed using fractional Lévy stable motion (fLsm) and applied to a real dataset collected in the DKASC photovoltaic system in Alice Springs, Australia. The LRD prediction model considers the influence of current and past trends in the stochastic series on the future trends. Firstly, the calculation of the maximum steps prediction was introduced based on the maximum Lyapunov. The maximum prediction steps could provide the prediction steps for subsequent prediction models. Secondly, the order stochastic differential equation (FSDE) which describes the fLsm can be obtained. The parameters of the FSDE were estimated by using a novel characteristic function method. The PV power forecasting model with the LRD characteristics was obtained by discretization of FSDE. By comparing statistical performance indicators such as root max error, mean square error with Conv-LSTM, BiLSTM, and GA-LSTM models, the performance of the proposed fLsm model has been demonstrated. The proposed methods can provide better theoretical support for the stable and safe operation of PV grid connection. They have high reference value for grid dispatching department.

Funder

Science and Technology Project of Fujian Province

Science and Technology Project of Quanzhou City

Joint Open-ended Foundation of State Key Laboratory of Integrated Automation in Process Industry of Northeastern University

Publisher

SAGE Publications

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3