Fractional Levy Stable and Maximum Lyapunov Exponent for Wind Speed Prediction

Author:

Duan Shouwu,Song Wanqing,Cattani CarloORCID,Yasen Yakufu,Liu He

Abstract

In this paper, a wind speed prediction method was proposed based on the maximum Lyapunov exponent (Le) and the fractional Levy stable motion (fLsm) iterative prediction model. First, the calculation of the maximum prediction steps was introduced based on the maximum Le. The maximum prediction steps could provide the prediction steps for subsequent prediction models. Secondly, the fLsm iterative prediction model was established by stochastic differential. Meanwhile, the parameters of the fLsm iterative prediction model were obtained by rescaled range analysis and novel characteristic function methods, thereby obtaining a wind speed prediction model. Finally, in order to reduce the error in the parameter estimation of the prediction model, we adopted the method of weighted wind speed data. The wind speed prediction model in this paper was compared with GA-BP neural network and the results of wind speed prediction proved the effectiveness of the method that is proposed in this paper. In particular, fLsm has long-range dependence (LRD) characteristics and identified LRD by estimating self-similarity index H and characteristic index α. Compared with fractional Brownian motion, fLsm can describe the LRD process more flexibly. However, the two parameters are not independent because the LRD condition relates them by αH > 1.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference32 articles.

1. Analysis of wind power value to power system operation;Lei;Power Syst. Technol.,2002

2. Reliability model of wind power plants and its application;Shu-Yong;Proc. -Chin. Soc. Electr. Eng.,2000

3. An optimization method for determining wind power penetration limit in power system under static security constraints;Ya-Zhou;Proc. -Chin. Soc. Electr. Eng.,2001

4. Wind power penetration limit calculation based on chance constrained programming;Lei;Proc. CSEE,2002

5. Short-term forecasting of wind speed and related electrical power

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3