Task space-based dynamic trajectory planning for digging process of a hydraulic excavator with the integration of soil–bucket interaction

Author:

Zou Zhihong1ORCID,Chen Jin1,Pang Xiaoping1

Affiliation:

1. College of Mechanical Engineering, Chongqing University, Chongqing, PR China

Abstract

In this paper, a task space-based methodology for dynamic trajectory planning for digging process of a hydraulic excavator is presented, with the integration of soil–bucket interaction. An extended soil–bucket interaction model, which adds the resistive moment compared to the previous models, is provided in this research. This improved model is validated by comparing with the measurement data taken from field experiments before integrating it into a dynamic model of an excavator. Further, Newton–Euler method is used for the derivation of the dynamics of each link of the excavator to determine the joint forces, which can cause the machine damage. The position and orientation trajectories of the bucket in the task space are parameterized by using the B-splines, so as to achieve the task-oriented operations and ensure the operation flexibility. The joint space motion characteristics are obtained by solving the inverse kinematics of the working mechanism of an excavator. Moreover, to avoid the operation uncertainty for a given bucket tip position trajectory and reduce the computational effort, the self-motion parameters are introduced when solving the inverse kinematics of the redundant working mechanism. All these self-motion parameters are taken as a set of design variables in the trajectory optimization problem. Also, the limits on the hydraulic driving forces, joint angles, angular velocities and accelerations, as well as bucket capacity are considered as the optimization constraints for the digging process. Finally, optimization examples of two typical digging categories (i.e. level digging work and slope digging work) are given to demonstrate and verify the capabilities of the new methodology proposed in this research. The results show that the proposed method can effectively generate the optimal trajectories satisfying the following criteria: time efficiency, energy efficiency, and least machine damage. This work lays a solid foundation for motion planning and autonomous control of an excavator.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3