Rigid–flexible coupling dynamics with contact estimator for robot/PTL system

Author:

Zheng Xiaoliang1ORCID,Wu Gongping1,Jiang Wei1,Fan Fei1,Zhu Jiale1

Affiliation:

1. School of Power and Mechanical Engineering, Wuhan University, Wuhan, China

Abstract

In order to enhance sampling efficiency and security when robot maintains power transmission line (PTL), this article develops a new approach for the rigid-flexible coupling dynamics of robot/PTL system, which decouples the large system into two small systems and solves them separately by estimating the contact force. The robot is modelled as a system of rigid bodies by screw theory, while the PTL system is modelled using absolute node coordinate formulation (ANCF). The integration of screw theory, ANCF and contact estimator trained by artificial neural network has not been accomplished before in the literature. The main contribution of this paper is to achieve this integration with the goal of developing a new and general approach for the nonlinear dynamic analysis of the interaction of the rigid maintenance robot with flexible PTL cable. A simplified two-dimensional example is used to compute the effect of the robot/PTL interaction under different operating conditions to have an understanding of the coupling approach between the two systems. A more detailed three-dimensional model was developed, and the results obtained validate the utility and effectiveness of our approach.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unilateral frictional contact between a rigid wheel traversing on a flexible beam: An analytical investigation;Applied Mathematical Modelling;2023-08

2. Robust stabilization control of live working robot under wind load based on angular momentum conservation principle;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-03-16

3. Kinodynamic planning with reachability prediction for PTL maintenance robot;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2021-02-18

4. Autonomous Behavior Intelligence Control of Self-Evolution Mobile Robot for High-Voltage Transmission Line in Complex Smart Grid;Complexity;2020-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3