A multi-body dynamic study of vibration of a planetary gear train with the planetary bearing fault

Author:

Liu Jing12ORCID,Wang Linfeng2,Ma Jinlei2,Yu Wennian3ORCID,Shao Yimin2

Affiliation:

1. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing, P.R. China

2. College of Mechanical Engineering, Chongqing University, Chongqing, P.R. China

3. School of Mechanical Engineering, University of Science and technology Beijing, Beijing, P.R. China

Abstract

Local faults including pits and spalls in any planet bearing can greatly affect the vibration of the planetary gear train, as well as the elastic support of the ring gear. However, the dynamic modelling methods in previous work can only formulate the local fault and the elastic support of the ring gear independently. To address this issue, a multi-body dynamic model for a planetary gear train with a local fault in the planet bearing and an elastic ring gear foundation are introduced to analyze the effect of local fault on the vibration. The local fault in the planet bearing is modelled as a rectangular one. Both the planet bearings including the radial clearance and ring gear with an elastic foundation are considered in the multi-body dynamic model. The contact stiffnesses and damping coefficients of gears and bearings are calculated by the methods reported in the literature. A Coulomb friction model is adopted to model the frictions between mating components of the system. In order to validate the proposed multi-body dynamic model, its simulation results are directly compared with those from theoretical methods as well as the experimental methods reported in the literature. Moreover, parameter studies are conducted to discuss the effects of local faults in the planet-bearing races, the sun gear speed, and the carrier moment on the vibration of the planetary gear train. The analyzing results of this study can provide some guidance for detection approaches of local faults in the planet bearings of planetary gear trains through vibration analysis.

Funder

National Natural Science Foundation of China

Chongqing Research Program of Basic Research and Frontier Technology

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3