A simulation method for dynamic force and vibrations of a roller bearing in the planetary gears considering the roller profile

Author:

Liu Jing12ORCID,Shi Zhifeng3ORCID,Xu Jin4,Cheng Yan4,Li Hongwu4

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, P.R. China

2. Key Laboratory for Unmanned Underwater Vehicle, Northwestern Polytechnical University, Xi’an, P.R. China

3. College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, P.R. China

4. China North Vehicle Research Institute, Beijing, P.R. China

Abstract

The roller profile shape can change the fatigue life and vibrations for planet roller bearing (PRB), as well as the impact between the rollers and cage. In this study, an analytical study of the dynamic forces and vibrations of a PRB considering the roller profile. To avoid the stress concentration at the roller ends, the roller modification method is proposed to improve the dynamic forces. The contact stiffness and load-deformation exponent of the roller-race interaction for four different roller modification types are achieved. A PRB dynamic model is established to discuss the effects of roller modification types on the dynamic forces and vibrations for PRB. Computation results of those four roller modification types are compared to the results of the PRB with the cylindrical roller type. It includes that the roller profile shape can greatly change the contact forces between the rollers and races, as well as the impact forces between the rollers and cage. The roller profile shapes can also influence the vibrations of PRBs.

Funder

Natural Science Foundation of Chongqing

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3