A quasi-static contact model for global dynamic simulation of multibody system with contact-impact

Author:

Wang Jianyao12ORCID,Wang Hongdong12

Affiliation:

1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China

2. Key laboratory of Marine Intelligent Equipment and System of Ministry of Education, Shanghai Jiao Tong University, Shanghai, China

Abstract

The global impact dynamics of multibody system is challenging due to the multi-scale characteristics of slow-changing non-contact process and fast-changing impact process. To solve the contradiction between the impact accuracy and the global simulation efficiency, a novel quasi-static contact model is proposed where the local contact domain is finely discretized and the energy loss caused by elastoplasticity is considered, and the real-time force-displacement interaction is established to execute the global integration capably. Through the experimental case of flexible pendulum impact, the proposed model is compared with measurements and existing methods, including impulse method, continuous contact force method and nonlinear finite element method. It is shown that the impulse method and continuous contact force method are both sensitive to the coefficient of restitution, yielding uncertain results. The nonlinear finite element method can accurately describe the impact process, but its calculation scale is too large to apply to the global simulation. The quasi-static model can accurately describe the response of the global process and does not rely on artificial selection of any parameters, and the calculation efficiency is greatly improved compared with the nonlinear finite element method.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3