Dynamic modeling and vibration characteristics analysis of cylinder with local defects in axial piston pump

Author:

Tang Hesheng12ORCID,Wang Jialun1,Ying Pingting1,Kumar Anil1ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, Wenzhou University, Wenzhou, China

2. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China

Abstract

The piston/cylinder pair suffers from excessive wear during the operation of axial piston pumps, and the local defects usually occur in the brass bush in the cylinder bore. Generally, the wear of cylinder is the main source of failure that affects the reliability of axial piston pumps. Thus, it is necessary to conduct an in-depth study on the vibration generated by the cylinder with local defects. Considering the effect of defect dimension, a novel time-varying displacement excitation model of the axial piston pump cylinder defect is proposed and establishes a 13 degrees of freedom lumped parameter dynamic model for cylinder fault. Then, investigating the effects of length and depth of the defect on the spectral amplitude and exploring the fault characteristic frequency of cylinder. Lastly, the model was validated on a test rig. The results demonstrate that the constructed model can predict the vibration caused by a locally defective cylinder with a frequency domain error of 0.69% and the fault characteristic frequency of cylinder is the same as its rotational frequency. Moreover, the defect length will influence the amplitude and duration of the cylinder-defect pulse waveform. The fault excitation amplitudes increase with the increase of defect depths.

Funder

Wenzhou Major Science and Technology Innovation Project of China

Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems

Zhejiang Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3