Vehicle sideslip angle estimation for a four-wheel-independent-drive electric vehicle based on a hybrid estimator and a moving polynomial Kalman smoother

Author:

Wang Zhenpo1,Wu Jianyang1,Zhang Lei1,Wang Yachao1

Affiliation:

1. National Engineering Laboratory for Electric Vehicles & Collaborative Innovation Centre for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing, China

Abstract

This paper presents a vehicle sideslip angle estimation scheme against noises and outliers in sensor measurements for a four-wheel-independent-drive electric vehicle. The proposed scheme combines a robust unscented Kalman filter estimator based on the 3-DOF vehicle dynamics model and an extended Kalman filter estimator based on the kinematic model to form a hybrid estimator through a weighting factor. The weighting factor can be dynamically adjusted in real time to optimize the overall estimation performance under different driving conditions. The main contributions of this study to the related literature lie in two aspects. Firstly, a robust unscented Kalman filter estimator was incorporated to improve the robustness of dynamics-based estimation to sensor measurement outliers. Secondly, a novel moving polynomial Kalman smoother was included to filter out the noises in sensor measurements. Co-simulations of Matlab/Simulink and Carsim software were conducted under typical vehicle maneuvers and show that the proposed vehicle sideslip angle estimation scheme can obtain satisfied estimation results, with the moving polynomial Kalman smoother exhibiting better phase characteristics and filtering performance relative to commonly-used finite impulse response filters, and the robust unscented Kalman filter estimator being robust to sensor measurement outliers.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3