Chaos control in attitude dynamics of a gyrostat satellite based on linearised Poincare' map estimation by support vector machine

Author:

Abtahi Seyed M1,Sadati Seyed H1

Affiliation:

1. Faculty of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran

Abstract

Chaos control of an apparent-type gyrostat satellite (GS) is investigated in this work. The GS under study consists of a main platform along with the three reaction wheels. The mathematical model of the GS is first derived using the quaternion-based kinematic and Euler-based kinetic equations of motion under the gravity gradient perturbation. Chaotic dynamics of the open-loop system without a feedback is then analyzed by the use of the numerical simulation in the phase portrait trajectories, Poincare' section, and time series responses. The existence of chaos is also demonstrated using the Lyapunov exponent criterion. In order to suppress chaos in the GS, a quaternion feedback controller is designed by the modification of Ott–Grebogi–Yorke (OGY) algorithm based on the linearisation of Poincare' map. In the controller strategy, the Poincare' map is estimated by the least square-support vector machine technique. Then, the discrete-time proportional-integral-derivative (PID) controller is applied on the linearised Poincare' map. The discrete-time PID-OGY control system rejects the chaotic behaviours in the attitude orientation of GS with the generation of a small control input leading to a decrease in the control effort and energy consumption.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamics analysis of a gyrostat system with intermittent forcing;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2021-12-01

2. Nonsingular Terminal Sliding Mode Control of Uncertain Chaotic Gyroscope System Based on Disturbance Observer;Journal of Mathematics;2021-01-04

3. Bifurcation of equilibria for general case of gyrostat satellite on a circular orbit;Aerospace Science and Technology;2020-10

4. Melnikov-based analysis for chaotic dynamics of spin-orbit motion of a gyrostat satellite;Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics;2019-04-11

5. Suppression of chaotic vibrations in suspension system of vehicle dynamics using chattering-free optimal sliding mode control;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2019-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3