Affiliation:
1. Faculty of Industrial and Mechanical Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Abstract
Interactions of the orbital motion on attitude dynamics of the gyrostat satellite are considered in this paper. The mathematical model is derived using the Hamiltonian method for the spin-orbit motion of the spacecraft followed by the reduction of the coupled equations of motion using the extended Deprit canonical transformation. The analytical Melnikov method is used innovatively to study chaos on the complex Spin-Orbit dynamics of the gyrostat satellite. Also, the numerical methods such as Lyapunov exponent criterion, Poincaré section, trajectories of phase portrait, and the time–history responses can be proved the heteroclinic bifurcation and chaotic vibrations in the highly nonlinear system. Using the results based on the Melnikov integral, the parameters of the spacecraft including the mass and inertia moment of satellite with respect to the altitude of orbit can be designed in order to control the bifurcation with a view to prevention of chaos in the system in the absence of an active control system.
Subject
Mechanical Engineering,Condensed Matter Physics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献