Optimized suspension kinematic profiles for handling performance using 10-degree-of-freedom vehicle model

Author:

Yuen Tey Jing1,Foong Soong Ming1,Ramli Rahizar1

Affiliation:

1. Advanced Computational and Applied Mechanics (ACAM) Research Group & Centre of Transportation Research (CTR), Department of Mechanical Engineering, Faculty of Engineering, University of Malaysia, Kuala Lumpur, Malaysia

Abstract

In an effort to reduce cost involving repetitive prototype build–test cycles, it is inevitable that simulation on full vehicle will be carried out during the product development stage. Desired suspension kinematic profiles of a given vehicle parameter are often unknown at the initial design stage. This paper demonstrates a simple methodology to obtain optimized kinematic characteristics against quality of handling performance using this model as predictive model in earliest design stage. A full vehicle model that is inclusive of suspension kinematic profiles and nonlinear damper profiles has been derived to enable the engineer to study the characteristics of the nonlinear elements against the vehicle performance when only limited vehicle data are available in the initial stage. Results suggest that the handling characteristics of a vehicle are sensitive to the changes in suspension kinematic profile. Additionally, the proposed vehicle model is able to provide satisfactory handling objective when measured in transient handling and frequency response compared to other vehicle models. A robust prediction model of the vehicle responses in frequency domain is proposed. It is coupled with the vehicle model employed as predictive model to optimize front toe angle profile against vehicle quality of handling performance measured in frequency domain.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3