Effect of the coordinate frame on high-order expansion of serial-chain displacement

Author:

Milenkovic Paul1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI, USA

Abstract

An algorithmic differentiation technique gives a simpler, faster power series expansion of the finite displacement of a closed-loop linkage. It accomplishes this by using a higher order than what has been implemented by complicated prior formulas for kinematic derivatives. In this expansion, the joint rates and axis lines generate the instantaneous screw of each link. Constraining the terminal link to have a zero instantaneous screw satisfies closure. In order to maintain closure over a finite displacement, it is necessary to track the spatial trajectory of each joint axis line, which in turn is directed by the instantaneous screw of a link to which it is attached. Prior algorithms express these screws in a common ground-referenced coordinate frame. Motivated by the kinematics solver portion of the recursive Newton–Euler algorithm, an alternative formulation uses sparse matrices to update the instantaneous screw between successive link-local frames. The recursive Newton–Euler algorithm, however, conducts the expansion to only second order, where this paper shows local coordinate frames that are only instantaneously aligned with their respective links give identical expressions to those in frames that move with the links. Moving frames, however, require about 40% of the operations of the global-frame formulation in the asymptotic limit. Both incrementally translated (Java) and statically compiled (C++) software implementations offer more modest performance gains; execution profiling shows reasons in order of importance (1) balance of calculation tasks when below the asymptotic limit, (2) Java array bounds checking, and (3) hardware acceleration of loops.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3