Comparison of analytical and multibody dynamic approaches in the study of a V6 engine piston

Author:

Cavalli M1,Lavacchielli G1,Tonelli R1,Nicoletto Gianni2,Riva Enrica2

Affiliation:

1. TP Engineering srl, Parma, Italy

2. Dipartimento di Ingegneria Industriale, Università degli Studi di Parma, Parma, Italy

Abstract

Two methods for the modelling and analysis of the piston/cylinder interaction are compared in this paper with reference to a V6 turbocharged gasoline engine piston. The first method is a traditional analytical method based on the equation of motion derived for the axial movement of the piston, written according to the kinematics of the crank mechanism. The second method is based on a multibody analysis, performed with the software AVL Excite™ Power Unit after a modal reduction of the system. The lateral force between the piston and the cylinder calculated using the analytical method is compared to the one calculated with a simplified multibody model. The results are well correlated, but in order to identify the piston secondary motion, an advanced multibody model is necessary since the consideration of the hydrodynamic effects, the flexibility of the bodies and the real profiles of the contacting surfaces is crucial. With regard to the latter aspect, a finite element model of the system under thermal boundary conditions has been implemented to evaluate the radial deformation and proper constraints have been considered to take into account the engine block stiffness. The obtained results are important because they have an impact on the radial clearance between the piston and the liner. When the multibody model takes into account these advanced effects, the piston slap events are clearly identified after the top dead centre and corresponding secondary peaks in the lateral force acting on the thrust side are calculated. At the end, a sensitivity analysis to the change of the piston-pin offset is also performed. Apart from the expected result of a lower lateral force peak when the offset is taken towards the anti-thrust side, some interesting differences are detected about the slapping behaviour. These events are clearly recognisable only if the offset is taken towards the thrust side because of the unfavourable piston rotation just prior to their occurrences. The pronounced anti-clockwise rotation of the piston prior to the lateral force peak occurrence in case of anti-thrust side offset, on the other hand, does not allow for a proper piston slap, even if the lateral acceleration is higher due to the centre of mass position with respect to the piston pin axis.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation Research on Cylinder Liner Shape and Position Tolerance under Thermo-Mechanical Load;Processes;2024-06-21

2. Multi-body dynamics in vehicle engineering;Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics;2023-06-21

3. Study on the influence of various factors on block vibration;International Journal of Engine Research;2023-01-15

4. Study on the correlation between combustion status and block vibration induced by piston slap;Applied Acoustics;2022-10

5. Optimization of torsional vibration damper of cranktrain system using a hybrid damping approach;Engineering Science and Technology, an International Journal;2021-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3