Simulation Research on Cylinder Liner Shape and Position Tolerance under Thermo-Mechanical Load

Author:

Han Feng1,Wang Hui1,Wang Jian1,Wang Jingchao1,Lin Jiewei1,Dai Huwei1,Zhang Junhong12

Affiliation:

1. State Key Laboratory of Engines, Tianjin University, Tianjin 300354, China

2. Mechanical Engineering Department, Tianjin Ren’Ai College, Tianjin 301636, China

Abstract

The cylinder liner bears alternating thermal load and mechanical load, and evaluating the cylinder liner deformation is a key issue in the design stage of an engine. In this work, the shape and position tolerance of the cylinder liner to various loads were studied based on the finite element method, the simplex algorithm and the least square method. Firstly, the heat transfer boundary conditions of the cylinder liner were obtained through combustion simulation. Combined with the mechanical load, the transient deformation of the cylinder liner under the thermo-mechanical load was obtained. Subsequently, the out-of-roundness and coaxiality were selected to evaluate the shape and position changes in the cylinder liner. Finally, the transient tolerance analysis of the cylinder liner under alternating thermo-mechanical load was carried out. The results show that the maximum out-of-roundness of the cylinder liner under thermal load, mechanical load and thermos-mechanical load was 15.12, 43.40 and 51.76 μm, respectively. The maximum coaxiality under thermal load, mechanical load and thermos-mechanical load were 6.17, 80.49 and 80.22 μm. The side thrust was more likely to cause uneven deformation of the cylinder liner section, the liner coaxiality was mainly affected by the cylinder burst pressure, and the liner shape tolerance was much more sensitive to the mechanical load than the mechanical load.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3