Stability and synchronous characteristics of a two exciters vibration system considering material motion

Author:

Hou Yongjun1,Xiong Guang1ORCID,Fang Pan1ORCID,Du Mingjun1ORCID,Wang Yuwen1

Affiliation:

1. School of Mechatronic Engineering, Southwest Petroleum University, China

Abstract

Nowadays, two exciters vibration system played an indispensable role in a majority of machinery and devices, such as vibratory feeder, vibrating screen, vibration conveyer, vibrating crusher, and so on. The stability of the system and the synchronous characteristics of two exciters are affected by material motion. However, those effects of material on two exciters vibration system were studied very little. Based on the special background, a mechanical model that two exciters vibration system considering material motion is proposed. Firstly, the system's dynamic equations are solved by using Lagrange principle and Newton's second law. Then, the motion stability of the system when material with different mass move on the vibrating body is analyzed by [Formula: see text] mapping and numerical simulation methods, and the motion forms of the material are also studied. Meanwhile, the frequency responses of the vibrating body are analyzed. Finally, the influence of material on the phase difference of the two exciters is revealed. It can be concluded that with the mass ratio of the material to the vibrating body increasing, the system's motion evolves from stable periodic motion to chaotic state, the synchronization ability of two exciters decline, and the unpredictability of abrupt change about the phase difference increases. Further, the uncertainties of both the abrupt change of phase difference and the collision location affect each other and eventually lead to the instability of the system.

Funder

Chengdu International Science and Technology Cooperation Project

National Natural Science Foundation of China

Postdoctoral fund project of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3