Evaluation of the Ability of AlphaFold to Predict the Three-Dimensional Structures of Antibodies and Epitopes

Author:

Polonsky Ksenia12ORCID,Pupko Tal2ORCID,Freund Natalia T.1ORCID

Affiliation:

1. *Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

2. †Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel

Abstract

Abstract Being able to accurately predict the three-dimensional structure of an Ab can facilitate Ab characterization and epitope prediction, with important diagnostic and clinical implications. In this study, we evaluated the ability of AlphaFold to predict the structures of 222 recently published, high-resolution Fab H and L chain structures of Abs from different species directed against different Ags. We show that although the overall Ab prediction quality is in line with the results of CASP14, regions such as the complementarity-determining regions (CDRs) of the H chain, which are prone to higher variation, are predicted less accurately. Moreover, we discovered that AlphaFold mispredicts the bending angles between the variable and constant domains. To evaluate the ability of AlphaFold to model Ab–Ag interactions based only on sequence, we used AlphaFold-Multimer in combination with ZDOCK to predict the structures of 26 known Ab–Ag complexes. ZDOCK, which was applied on bound components of both the Ab and the Ag, succeeded in assembling 11 complexes, whereas AlphaFold succeeded in predicting only 2 of 26 models, with significant deviations in the docking contacts predicted in the rest of the molecules. Within the 11 complexes that were successfully predicted by ZDOCK, 9 involved short-peptide Ags (18-mer or less), whereas only 2 were complexes of Ab with a full-length protein. Docking of modeled unbound Ab and Ag was unsuccessful. In summary, our study provides important information about the abilities and limitations of using AlphaFold to predict Ab–Ag interactions and suggests areas for possible improvement.

Funder

Israel Science Foundation

United States - Israel Binational Science Foundation

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3