Tumor-Infiltrating Lymphocytes Exhibiting High Ex Vivo Cytolytic Activity Fail to Prevent Murine Melanoma Tumor Growth In Vivo

Author:

Prévost-Blondel Armelle1,Zimmermann Christine1,Stemmer Christine1,Kulmburg Peter2,Rosenthal Felicia M.2,Pircher Hanspeter1

Affiliation:

1. *Department of Immunology, Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany; and

2. †Department of Internal Medicine I (Hematology/Oncology), Freiburg University Medical Center, Freiburg, Germany

Abstract

AbstractThe identification of tumor-associated Ags recognized by CD8+ CTL and prevention of tumor outgrowth by adoptive transfer of these CTL demonstrates that CD8+ T cells play a major role in antitumor immunity. We have generated B16.F10 melanoma cells that express the glycoprotein epitope amino acid 33–41 (GP33) of the lymphocytic choriomeningitis virus (LCMV) to examine antitumor CD8+ T cell response in C57BL/6 mice immune to LCMV and in mice transgenic for the LCMV GP33-specific P14 TCR (P14 TCR mice). We find that B16.F10GP33 tumor cells grew in syngeneic C57BL/6 mice without inducing T cell tolerance. LCMV infection or adoptive transfer of LCMV-specific effector T cells delayed but did not prevent growth of preestablished tumors in these mice. However, B16.F10GP33 tumor cells were rejected in mice immune to LCMV and in mice treated with LCMV-specific effector T cells on the same day as the tumor. Surprisingly, B16.F10GP33 tumor cells grew in P14 TCR transgenic mice despite an abundance of tumor-associated Ag-specific CD8+ T cells. In these mice, freshly isolated tumor-infiltrating lymphocytes exhibited an activated phenotype and displayed high GP33-specific cytolytic activity when assessed ex vivo. Thus, B16.F10GP33 melanoma cells are able to initiate, but not to sustain, a GP33-specific CTL response sufficient to clear the tumor enduringly.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3