The TCR-Binding Region of the HLA Class I α2 Domain Signals Rapid Fas-Independent Cell Death: A Direct Pathway for T Cell-Mediated Killing of Target Cells?

Author:

Pettersen Rolf D.1,Gaudernack Gustav2,Olafsen Mette Kløvstad1,Lie Sverre O.3,Hestdal Kjetil1

Affiliation:

1. *Pediatric Research and

2. ‡Section for Immune Therapy, The Norwegian Radium Hospital, Oslo, Norway

3. †Pediatrics, The National Hospital, and

Abstract

AbstractTCR binding to an MHC class I/peptide complex is a central event in CTL-mediated elimination of target cells. In this study, we demonstrate that specific activation of the TCR-binding region of the HLA-A2 class I α2 domain induces apoptotic cell death. mAbs to this region rapidly induced apoptosis of HLA-A2-expressing Jurkat E11 cells, as determined by morphologic changes, phosphatidylserine exposure on the cell surface, and propidium iodide uptake. In contrast, apoptosis was not induced following culture with mAbs directed to other regions of the class I molecule. Death signaling by class I molecules is apparently dependent on coreceptor activation, as apoptosis is also signaled by HLA-A2 molecules, where the intracytoplasmic residues were deleted. HLA class I α2-mediated cell death appeared to proceed independent of the Fas pathway. Compared with apoptotic signaling by Fas ligation, HLA class I α2-mediated responses displayed a faster time course and could be observed within 30 min. Furthermore, class I α2-induced cell death did not involve observable DNA fragmentation. The apoptotic response was not affected significantly by peptide inhibitors of IL-1β converting enzyme (ICE)-like proteases and CPP32. Taken together, activation of the TCR-binding domain of the class I α2 helix may result in apoptotic signaling apparently dependent on a novel death pathway. Thus, target HLA class I molecules may directly signal apoptotic cell death following proper ligation by the TCR.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3