The In Vivo Fate of APCs Displaying Minor H Antigen and/or MHC Differences Is Regulated by CTLs Specific for Immunodominant Class I-Associated Epitopes

Author:

Loyer Véronique1,Fontaine Pierre1,Pion Stéphane1,Hétu Francis1,Roy Denis-Claude1,Perreault Claude1

Affiliation:

1. Guy-Bernier Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada

Abstract

AbstractThe goal of this work was to evaluate the fate of APCs following interactions with T cells in unprimed mice with a normal T cell repertoire. We elaborated a model in which male adherent peritoneal mononuclear cells were injected into the foreleg footpads of naive female recipients mismatched for either minor or major histocompatibility Ags. At various times after injection, APC numbers in the draining (axillary and brachial) lymph nodes were assessed using a Ube1y gene-specific PCR assay. Our experimental model was designed so that the number of APCs expressing the priming epitope was similar to what is observed under real life conditions. Thus, early after injection, the frequency of afferent lymph-derived APCs expressing the priming epitope was in the range of 101–102/106 lymph node cells. We found that APCs presenting some, but not all, nonself epitopes were killed rapidly after entrance into the lymph nodes. Rapid elimination of APCs occurred following interactions with MHC class I-restricted, but not class II-restricted, T cells and was observed when APCs presented an immunodominant (B6dom1/H7a), but not a nondominant (HY), epitope. Killing of APCs was mediated partly, but not exclusively, by perforin-dependent process. We propose that killing of APCs by CTLs specific for immunodominant MHC class I-restricted epitopes may be instrumental in regulating the intensity, duration, and diversity of T cell responses.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3