Inhibition of the C1s Protease and the Classical Complement Pathway by 6-(4-Phenylpiperazin-1-yl)Pyridine-3-Carboximidamide and Chemical Analogs

Author:

Xu Xin1ORCID,Herdendorf Timothy J.1,Duan Huiquan1ORCID,Rohlik Denise L.2ORCID,Roy Sourav2ORCID,Zhou Hinman3,Alkhateeb Haya3ORCID,Khandelwal Sanjay4ORCID,Zhou Qilong5,Li Ping5,Arepally Gowthami M.4ORCID,Walker John K.36ORCID,Garcia Brandon L.2ORCID,Geisbrecht Brian V.1ORCID

Affiliation:

1. *Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS

2. †Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC

3. ‡Department of Pharmacology, School of Medicine, St. Louis University, St. Louis, MO

4. §Division of Hematology, Duke University Medical Center, Durham, NC

5. ¶Department of Chemistry, Kansas State University, Manhattan, KS

6. ‖Department of Chemistry, St. Louis University, St. Louis, MO

Abstract

Abstract The classical pathway (CP) is a potent mechanism for initiating complement activity and is a driver of pathology in many complement-mediated diseases. The CP is initiated via activation of complement component C1, which consists of the pattern recognition molecule C1q bound to a tetrameric assembly of proteases C1r and C1s. Enzymatically active C1s provides the catalytic basis for cleavage of the downstream CP components, C4 and C2, and is therefore an attractive target for therapeutic intervention in CP-driven diseases. Although an anti-C1s mAb has been Food and Drug Administration approved, identifying small-molecule C1s inhibitors remains a priority. In this study, we describe 6-(4-phenylpiperazin-1-yl)pyridine-3-carboximidamide (A1) as a selective, competitive inhibitor of C1s. A1 was identified through a virtual screen for small molecules that interact with the C1s substrate recognition site. Subsequent functional studies revealed that A1 dose-dependently inhibits CP activation by heparin-induced immune complexes, CP-driven lysis of Ab-sensitized sheep erythrocytes, CP activation in a pathway-specific ELISA, and cleavage of C2 by C1s. Biochemical experiments demonstrated that A1 binds directly to C1s with a Kd of ∼9.8 μM and competitively inhibits its activity with an inhibition constant (Ki) of ∼5.8 μM. A 1.8-Å-resolution crystal structure revealed the physical basis for C1s inhibition by A1 and provided information on the structure–activity relationship of the A1 scaffold, which was supported by evaluating a panel of A1 analogs. Taken together, our work identifies A1 as a new class of small-molecule C1s inhibitor and lays the foundation for development of increasingly potent and selective A1 analogs for both research and therapeutic purposes.

Funder

HHS | NIH | National Institute of General Medical Sciences

HHS | NIH | National Institute of Neurological Disorders and Stroke

North Carolina Biotechnology Center

St. Louis University Institute for Drug and Biotherapeutic Innovation

National Science Foundation

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3