Rapid immune activation by CpG motifs in bacterial DNA. Systemic induction of IL-6 transcription through an antioxidant-sensitive pathway.

Author:

Yi A K1,Klinman D M1,Martin T L1,Matson S1,Krieg A M1

Affiliation:

1. Department of Internal Medicine, University of Iowa College of Medicine, Iowa City 52242, USA.

Abstract

Abstract Unmethylated CpG dinucleotides (CpG motif) in bacterial DNA or synthetic oligodeoxynucleotides (CpG DNA) rapidly activate murine B cells to secrete IL-6 and IgM, as well as to proliferate. Within 30 min after CpG DNA stimulation in vivo, IL-6 mRNA levels were increased in liver, spleen, and thymus cells. Serum IL-6 protein was markedly increased within 1 h of stimulation. Treatment of a B cell line with CpG DNA led to an increase in the transcriptional activity of the IL-6 promoter. This CpG DNA-induced IL-6 production was not mediated via either a protein kinase C (PKC)-, protein kinase A (PKA)-, or nitric oxide (NO.)-dependent pathway but was inhibited by an antioxidant. In addition, the level of intracellular reactive oxygen species was increased within 20 min after CpG DNA, but not control non-CpG DNA, treatment. These results suggest that CpG DNA-induced IL-6 production is mediated through a reactive oxygen intermediate-dependent pathway. CpG DNA-mediated IL-6 production was enhanced by simultaneous signals delivered through the Ag receptor. The addition of neutralizing Abs against IL-6 to B cell cultures along with CpG oligodeoxynucleotides essentially abolished the CpG DNA-induced increased IgM secretion but had no significant effect on the B cell proliferation induced by the CpG motif. Our results suggest that the induction of IL-6 expression in response to CpG motifs in bacterial DNA may be an important immune defense mechanism that facilitates a rapid response to microbial infection.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3