Phosphorothioate Oligodeoxynucleotides Promote the In Vitro Development of Human Allergen-Specific CD4+ T Cells into Th1 Effectors

Author:

Parronchi Paola1,Brugnolo Francesca1,Annunziato Francesco1,Manuelli Cinzia1,Sampognaro Salvatore1,Mavilia Carmelo1,Romagnani Sergio1,Maggi Enrico1

Affiliation:

1. Department of Internal Medicine, Immunoallergology and Respiratory Disease Unit, University of Florence, Florence, Italy

Abstract

AbstractDNA vaccination is an effective approach in inducing the switch of murine immune responses from a Th2 to a Th1 profile of cytokine production that has been related to the activity of unmethylated CpG motifs present in bacterial, but not mammalian, DNA. We report here that some synthetic phosphorothioate, but not phosphodiester, oligodeoxynucleotides (ODNs) were able to induce B cell proliferation and to shift the in vitro differentiation of Dermatophagoides pteronyssinus group 1-specific human CD4+ T cells from atopic donors into Th cell effectors showing a prevalent Th1, instead of Th2, cytokine profile. This latter effect was completely blocked by the neutralization of IL-12 and IFN (α and γ) in bulk culture, suggesting that the Th1-inducing activity of phosphorothioate ODNs was mediated by their ability to stimulate the production of these cytokines by monocytes, dendritic, and NK cells. Cytosine methylation abolished the Th1-inducing activity of ODNs; however, CpG dinucleotide-containing ODNs exhibited the Th1-shifting effect independently of the presence or the absence of CpG motifs (5′-pur-pur-CpG-pyr-pyr-3′). Moreover, the inversion of CpG to GpC resulted only in a partial reduction of this activity, suggesting that the motif responsible for the Th1-skewing effect in humans is at least partially different from that previously defined in mice. These results support the concept that the injection of allergens mixed to, or conjugated with, appropriate ODNs may provide a novel allergen-specific immunotherapeutic regimen for the treatment of allergic disorders.

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3