Affiliation:
1. *Division of Molecular Immunology, Department of Pathology, Weill Medical College of Cornell University, and
2. †The Immunology Program, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021
Abstract
AbstractPartly because of the lack of a suitable in vitro model, the trigger(s) and the mechanism(s) of somatic hypermutation in Ig genes are largely unknown. We have analyzed the hypermutation potential of human CL-01 lymphocytes, our monoclonal model of germinal center B cell differentiation. These cells are surface IgM+ IgD+ and, in the absence of T cells, switch to IgG, IgA, and IgE in response to CD40:CD40 ligand engagement and exposure to appropriate cytokines. We show here that CL-01 cells can be induced to effectively mutate the expressed VHDJH-Cμ, VHDJH-Cδ, VHDJH-Cγ, VHDJH-Cα, VHDJH-Cε, and VλJλ-Cλ transcripts before and after Ig class switching in a stepwise fashion. In these cells, induction of somatic mutations required cross-linking of the surface receptor for Ag and T cell contact through CD40:CD40 ligand and CD80:CD28 coengagement. The induced mutations showed intrinsic features of Ig V(D)J hypermutation in that they comprised 110 base substitutions (97 in the heavy chain and 13 in the λ-chain) and only 2 deletions and targeted V(D)J, virtually sparing CH and Cλ. These mutations were more abundant in secondary VHDJH-Cγ than primary VHDJH-Cμ transcripts and in V(D)J-C than VλJλ-Cλ transcripts. These mutations were also associated with coding DNA strand polarity and showed an overall rate of 2.42 × 10−4 base changes/cell division in VHDJH-CH transcripts. Transitions were favored over transversions, and G nucleotides were preferentially targeted, mainly in the context of AG dinucleotides. Thus, in CL-01 cells, Ig somatic hypermutation is readily inducible by stimuli different from those required for class switching and displays discrete base substitution modalities.
Publisher
The American Association of Immunologists
Subject
Immunology,Immunology and Allergy