Genome-Wide CRISPR/Cas9 Screening Identifies That Mitochondrial Solute Carrier SLC25A23 Attenuates Type I IFN Antiviral Immunity via Interfering with MAVS Aggregation

Author:

Zhang Hongguang1,Li Xin1,Wang Yiwei1,Liu Xianxian1,Guo Jing1,Wang Zheng23ORCID,Zhang Lulu1,Xiong Sidong1ORCID,Dong Chunsheng1

Affiliation:

1. *Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China

2. †Department of Reproductive Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China

3. ‡Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China

Abstract

Abstract Activation of the mitochondrial antiviral signaling (MAVS) adaptor, also known as IPS-1, VISA, or Cardif, is crucial for antiviral immunity in retinoic acid–inducible gene I (RIG-I)–like receptor signaling. Upon interacting with RIG-I, MAVS undergoes K63-linked polyubiquitination by the E3 ligase Trim31, and subsequently aggregates to activate downstream signaling effectors. However, the molecular mechanisms that modulate MAVS activation are not yet fully understood. In this study, the mitochondrial solute carrier SLC25A23 was found to attenuate type I IFN antiviral immunity using genome-wide CRISPR/Cas9 screening. SLC25A23 interacts with Trim31, interfering with its binding of Trim31 to MAVS. Indeed, SLC25A23 downregulation was found to increase K63-linked polyubiquitination and subsequent aggregation of MAVS, which promoted type I IFN production upon RNA virus infection. Consistently, mice with SLC25A23 knockdown were more resistant to RNA virus infection in vivo. These findings establish SLC25A23 as a novel regulator of MAVS posttranslational modifications and of type I antiviral immunity.

Funder

The National Natural Science Foundation of China

Publisher

The American Association of Immunologists

Subject

Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3