Toward a Computational Model of Constraint-Driven Exploration and Haptic Object Identification

Author:

Klatzky Roberta L1,Lederman Susan J2

Affiliation:

1. University of California, Santa Barbara, CA 93106, USA

2. Queen's University, Kingston, Ontario K7L 3N6, Canada

Abstract

A conceptual model of the human haptic system in relation to object identification is presented. The model encompasses major architectural elements including representations of haptically accessible object properties and exploratory procedures (EPs)—dedicated movement patterns that are specialized to extract particular properties. These architectural units are related in processing-specific ways. Properties are associated with exploratory procedures in keeping with the extent to which a given procedure delivers information about a given property. The EPs are associated with one another in keeping with their compatibility, as determined by parameters of motor execution and interactions with the object and the workspace. The resulting architecture is treated as a system of constraints which guide the exploration of an object during the course of identification. The selection of the next step in a sequence of exploration requires that constraints be optimally satisfied. A network approach to constraint satisfaction is implemented and shown to account for a number of previous empirical results concerning the time course of exploration, object classification speed, and incidental learning about object properties. This system has potential applications for robotic haptic exploration.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3