VecGCA: A Vector-Based Geographic Cellular Automata Model Allowing Geometric Transformations of Objects

Author:

Moreno Niandry1,Ménard André2,Marceau Danielle J3

Affiliation:

1. Geocomputing Laboratory, University of Calgary, Calgary, Alberta T2N 1N4, Canada

2. Planning and Development Research Center (CRAD), Laval University, Quebec G1K 7P4, Canada

3. Geocomputing Laboratory, Department of Geomatics Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW Calgary, Alberta T2N 1N4, Canada

Abstract

Cellular automata (CA) can reproduce global patterns and behavior from local interactions of cells and they are used increasingly to simulate complex natural and human systems. Among their attributes are their computational simplicity and their explicit representation of space and time. However, the classic definition of CA limits their application to problems that involve a discrete space, and similar rules and neighborhoods for all cells. In addition, the standard raster-based CA model is sensitive to spatial scale. This paper presents a new vector-based geographic cellular automata model, called the VecGCA model, which defines space as a collection of irregular geographic objects. Each object has a geometric representation (a polygon) that evolves through time according to a transition function that depends on the influence of neighboring polygons. In this model, the neighborhood is defined as the region of influence on each geographic object, and the neighbors are all geographic objects located within the region of influence. An innovative aspect of the VecGCA model is that the procedure allows geometric transformation of objects. The area of a polygon (representing an object) is reduced in the region that is nearest to the neighbor that exerts an influence on it, and the area of that neighbor is increased accordingly. The proposed model was tested with real data and compared with a raster-based CA model to simulate land-use changes in an agroforested area in southern Quebec, Canada. The model was validated using two land-use maps, produced from satellite Landsat Thematic Mapper imagery, which were acquired in 1999 and 2002. The results obtained show that VecGCA can represent well the dynamics in the study area through an adequate evolution of the geometry of the geographic objects which are independent of the cell size, whereas, to generate similar outcomes in the raster-based CA model, a sensitivity analysis must be conducted to determine which cell size is needed. The geometric transformation procedure introduced in the VecGCA model executes the change of shape of a geographic object by changing its state in a portion of its surface, allowing a more realistic representation of the evolution of the landscape.

Publisher

SAGE Publications

Subject

General Environmental Science,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3