Incorporation of Spatially Heterogeneous Area Partitioning into Vector-Based Cellular Automata for Simulating Urban Land-Use Changes

Author:

Zhu Jie12ORCID,Zhu Mengyao1,Na Jiaming12ORCID,Lang Ziqi1,Lu Yi34ORCID,Yang Jing35

Affiliation:

1. College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China

2. Anhui Province Key Laboratory of Physical Geographic Environment, Chuzhou 239004, China

3. Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China

4. City Futures Research Centre, School of Built Environment, University of New South Wales, Sydney, NSW 2052, Australia

5. School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Abstract

In cellular automata (CA) modeling, spatial heterogeneity can be delineated by geographical area partitioning. The dual constrained space clustering method is a prevalent approach for providing an objective and effective representation of differences within urban regions. However, previous studies faced issues by ignoring spatial heterogeneity, which could lead to an over- or under-estimation of the simulation results. Accordingly, this study attempts to incorporate spatially heterogeneous area partitioning into vector-based cellular automata (VCA), producing more accurate and reliable simulations of urban land-use change. First, an area partition strategy with DSC algorithm was employed to generate multiple relatively homogeneous sub-regions, which can effectively capture the spatial heterogeneity in the distribution of land-use change factors. Second, UrbanVCA, a brand-new VCA-based framework, was utilized for simulating land-use changes in distinct urban partitions. Finally, the constructed partitioned VCA model was applied to simulate rapid urban development in Jiangyin city from 2012 to 2017. The results indicated that the combination of DSC clustering and UrbanVCA model could obtain satisfying results as the average FoM values for the partitions and the entire study area exceeded 0.22. Furthermore, a comparative analysis of results from traditional area-partitioned CA models revealed that the proposed area partitioning approach had the potential to yield more accurate simulation outcomes as the FoM values were higher and SHDI and LSI metrics were closer to real-world observations, indicating its good performance in simulating fragmented urban landscapes.

Funder

National Natural Science Foundation of China

Ministry of Education of Humanities and Social Science

Foundation of Anhui Province Key Laboratory of Physical Geographic Environment

Natural Resource Science and Technology Plan Project supported by Natural Resources Department of Jiangsu Province

2022 General Project of Philosophy and Social Science Research in Jiangsu Universities

Foundation of Key Lab of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3