Optical Velocity Patterns, Velocity-Sensitive Neurons, and Space Perception: A Hypothesis

Author:

Nakayama K1,Loomis J M1

Affiliation:

1. Smith-Kettlewell Institute and Department of Visual Sciences, Pacific Medical Center, 2232 Webster Street, San Francisco, California 94115, USA

Abstract

A hypothesis is put forward of how global patterns of optical flow, as discussed by Gibson, Johansson, and others, could be processed by relatively simple physiological mechanisms. It is suggested that there may exist motion-sensitive cells in the visual system which operate on the optical flow over the retina, and, in so doing, structure the visual field in terms of distinct surfaces that move and/or lie at varying distances from the observer. First, concepts of static and dynamic perspective relative to a sphere centered about the eye are developed, partly on the basis of the work of Gordon. It is pointed out that the velocity flow pattern has a very simple form making it amenable to analysis by relatively low-level mechanisms. Next a higher-order variable of optical flow, the ‘convexity’, is defined; under the assumption of a rigid environment, convexity is shown to be related to relative depth. It is then postulated that velocity-sensitive cells having center—surround organization could be linked in such a way as to define a higher-order cell, the convexity cell, having functional properties that make it sensitive to the convexity function. The response profile of a layer of such cells would provide an efficient structuring of the visual field in terms of distinct optical surfaces. Relevant evidence is briefly discussed. Lastly, the optical flow patterns corresponding to rotations of the observer are considered. It is shown that the convexity cell is insensitive to rotations and in consequence responds in an invariant fashion to aspects of the optical flow which are related to the surrounding environment.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3