Affiliation:
1. Department of Psychology, University of York, Heslington, York, YO10 5DD, UK
Abstract
Numerous studies have measured the extent to which motion aftereffects transfer interocularly. However, many have done so using bias-prone methods, and studies rarely compare different types of motion directly. Here, we use a technique designed to reduce bias (Morgan, 2013, Journal of Vision, 13(8):26, 1–11) to estimate interocular transfer (IOT) for five types of motion: simple translational motion, expansion/contraction, rotation, spiral, and complex translational motion. We used both static and dynamic targets with subjects making binary judgments of perceived speed. Overall, the average IOT was 65%, consistent with previous studies (mean over 17 studies of 67% transfer). There was a main effect of motion type, with translational motion producing stronger IOT (mean: 86%) overall than any of the more complex varieties of motion (mean: 51%). This is inconsistent with the notion that IOT should be strongest for motion processed in extrastriate regions that are fully binocular. We conclude that adaptation is a complex phenomenon too poorly understood to make firm inferences about the binocular structure of motion systems.
Subject
Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献