Human neural responses involved in spatial pooling of locally ambiguous motion signals

Author:

Amano Kaoru12,Takeda Tsunehiro1,Haji Tomoki3,Terao Masahiko4,Maruya Kazushi5,Matsumoto Kenji3,Murakami Ikuya4,Nishida Shin'ya5

Affiliation:

1. Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba, Japan;

2. Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, Japan;

3. Tamagawa University Brain Science Institute, Machida-shi, Tokyo, Japan;

4. Department of Life Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan; and

5. NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Kanagawa, Japan

Abstract

Early visual motion signals are local and one-dimensional (1-D). For specification of global two-dimensional (2-D) motion vectors, the visual system should appropriately integrate these signals across orientation and space. Previous neurophysiological studies have suggested that this integration process consists of two computational steps (estimation of local 2-D motion vectors, followed by their spatial pooling), both being identified in the area MT. Psychophysical findings, however, suggest that under certain stimulus conditions, the human visual system can also compute mathematically correct global motion vectors from direct pooling of spatially distributed 1-D motion signals. To study the neural mechanisms responsible for this novel 1-D motion pooling, we conducted human magnetoencephalography (MEG) and functional MRI experiments using a global motion stimulus comprising multiple moving Gabors (global-Gabor motion). In the first experiment, we measured MEG and blood oxygen level-dependent responses while changing motion coherence of global-Gabor motion. In the second experiment, we investigated cortical responses correlated with direction-selective adaptation to the global 2-D motion, not to local 1-D motions. We found that human MT complex (hMT+) responses show both coherence dependency and direction selectivity to global motion based on 1-D pooling. The results provide the first evidence that hMT+ is the locus of 1-D motion pooling, as well as that of conventional 2-D motion pooling.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3