Affiliation:
1. Vanderbilt University, Nashville, TN 37203, USA
Abstract
Two experiments were performed to assess the accuracy and precision with which adults perceive absolute egocentric distances to visible targets and coordinate their actions with them when walking without vision. In experiment 1 subjects stood in a large open field and attempted to judge the midpoint of self-to-target distances of between 4 and 24 m. In experiment 2 both highly practiced and unpracticed subjects stood in the same open field, viewed the same targets, and attempted to walk to them without vision or other environmental feedback under three conditions designed to assess the effects on accuracy of time-based memory decay and of walking at an unusually rapid pace. In experiment 1 the visual judgments were quite accurate and showed no systematic constant error. The small variable errors were linearly related to target distance. In experiment 2 the briskly paced walks were accurate, showing no systematic constant error, and the small, variable errors were a linear function of target distance and averaged about 8% of the target distance. Unlike Thomson's (1983) findings, there was not an abrupt increase in variable error at around 9 m, and no significant time-based effects were observed. The results demonstrate the accuracy of people's visual perception of absolute egocentric distances out to 24 m under open field conditions. The accuracy of people's walking without vision to previously seen targets shows that efferent and proprioceptive information about locomotion is closely calibrated to visually perceived distance. Sensitivity to the correlation of optical flow with efferent/proprioceptive information while walking with vision may provide the basis for this calibration when walking without vision.
Subject
Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology
Cited by
299 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献