Retinal and Extraretinal Information in Movement Perception: How to Invert the Filehne Illusion

Author:

Wertheim Alexander H1

Affiliation:

1. TNO Institute for Perception, Kampweg 5, 3769 DE Soesterberg, The Netherlands

Abstract

During a pursuit eye movement made in darkness across a small stationary stimulus, the stimulus is perceived as moving in the opposite direction to the eyes. This so-called Filehne illusion is usually explained by assuming that during pursuit eye movements the extraretinal signal (which informs the visual system about eye velocity so that retinal image motion can be interpreted) falls short. A study is reported in which the concept of an extraretinal signal is replaced by the concept of a reference signal, which serves to inform the visual system about the velocity of the retinae in space. Reference signals are evoked in response to eye movements, but also in response to any stimulation that may yield a sensation of self-motion, because during self-motion the retinae also move in space. Optokinetic stimulation should therefore affect reference signal size. To test this prediction the Filehne illusion was investigated with stimuli of different optokinetic potentials. As predicted, with briefly presented stimuli (no optokinetic potential) the usual illusion always occurred. With longer stimulus presentation times the magnitude of the illusion was reduced when the spatial frequency of the stimulus was reduced (increased optokinetic potential). At very low spatial frequencies (strongest optokinetic potential) the illusion was inverted. The significance of the conclusion, that reference signal size increases with increasing optokinetic stimulus potential, is discussed. It appears to explain many visual illusions, such as the movement aftereffect and center–surround induced motion, and it may bridge the gap between direct Gibsonian and indirect inferential theories of motion perception.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3