Abstract
In this paper, we introduce a new family of sequences called the k-Fibonacci and k-Lucas spinors. Starting with the Binet formulas we present their basic properties, such as Cassini’s identity, Catalan’s identity, d’Ocagne’s identity, Vajda’s identity, and Honsberger’s identity. In addition, we discuss their generating functions. Finally, we obtain sum formulae and relations between k-Fibonacci and k-Lucas spinors.
Publisher
Prof. Marin Drinov Publishing House of BAS (Bulgarian Academy of Sciences)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献