Affiliation:
1. Department of Mathematics, Faculty of Science, Zonguldak Bülent Ecevit University, Zonguldak 67100, Turkey
Abstract
Spinors are important objects in physics, which have found their place more and more after the discovery that particles have an intrinsic angular momentum shape and Cartan’s mathematical expression of this situation. Recent studies using special number sequences have also revealed a new approach to the use of spinors in mathematics and have provided a different perspective for spinor research that can be used as a source for future physics studies. The purpose of this work is to expand the generalized Fibonacci quaternion polynomials to the generalized Fibonacci polynomial spinors by associating spinors with quaternions, and to introduce and investigate a new polynomial sequence that can be used to benefit from the potential advantages of spinors in physical applications, and thus, to provide mathematical arguments, such as new polynomials, for studies using spinors and quaternions in quantum mechanics. Starting from this point of view, in this paper we introduce and investigate a new family of sequences called generalized Fibospinomials (or generalized Fibonacci polynomial spinors or Horadam polynomial spinors). Being particular cases, we use (r,s)-Fibonacci and (r,s)-Lucas polynomial spinors. We present Binet’s formulas, generating functions and the summation formulas for these polynomials. In addition, we obtain some special identities of these new sequences and matrices related to these polynomials. The importance of this study is that generalized Fibospinomials are currently the most generalized sequence in the literature when moving from Fibonacci quaternions to spinor structure, and that a wide variety of new spinor sequences can be obtained from this particular polynomial sequence.