Численное интегрирование матричным методом краевых задач для линейных неоднородных обыкновенных дифференциальных уравнений третьего порядка с переменными коэффициентами

Author:

Маклаков Владимир Николаевич1ORCID,Maklakov Vladimir Nikolaevich2,Стельмах Янина Геннадьевна1ORCID,Stelmakh Yanina Gennadievna2

Affiliation:

1. Самарский государственный технический университет, г. Самара, 443100, Россия

2. Samara State Technical University, Samara, 443100, Russian Federation

Abstract

Использование многочлена Тейлора второй степени при аппроксимации производных конечными разностями приводит ко второму порядку аппроксимации традиционного метода сеток при численном интегрировании обыкновенных дифференциальных уравнений второго порядка с переменными коэффициентами. В работе при исследовании краевых задач для обыкновенных дифференциальных уравнений третьего порядка с переменными коэффициентами рассмотрен предложенный ранее метод численного интегрирования, использующий средства матричного исчисления, в котором аппроксимация производных конечными разностями не использовалась. Согласно указанному методу, при составлении системы разностных уравнений может быть выбрана произвольная степень многочлена Тейлора в разложении искомого решения задачи в ряд Тейлора. Вычислена невязка и дана оценка порядка аппроксимации метода в зависимости от выбранной степени многочлена Тейлора при использовании четырехточечного шаблона. Теоретически выявлены закономерности между порядком аппроксимации матричного метода и степенью используемого многочлена Тейлора. Установлено, что порядок аппроксимации пропорционален степени используемого многочлена Тейлора и меньше нее на две единицы. При использовании пятиточечного шаблона предложена процедура построения фиктивного граничного условия, позволяющая построить замкнутую систему разностных уравнений матричного метода численного интегрирования. Система разностных уравнений разбита на две подсистемы: в первую подсистему вошли два уравнения, первое из которых содержит заданное значение производной в граничных условиях задачи, второе - вычисленное из фиктивного граничного условия значение; во вторую подсистему вошли оставшиеся разностные уравнения построенной замкнутой системы. Вычислена невязка и дана оценка порядка аппроксимации метода в зависимости от выбранной степени многочлена Тейлора при использовании пятиточечного шаблона. Теоретически выявлены закономерности между порядком аппроксимации матричного метода и степенью используемого многочлена Тейлора. Установлено следующее: а) порядок аппроксимации первой подсистемы, второй подсистемы при четном значении степени используемого многочлена Тейлора и всей задачи пропорционален этой степени и меньше нее на две единицы; б) порядок аппроксимации второй подсистемы при нечетном значении степени используемого многочлена Тейлора пропорционален этой степени и меньше нее на единицу.

Publisher

Samara State Technical University

Subject

Applied Mathematics,Mechanics of Materials,Condensed Matter Physics,Mathematical Physics,Modelling and Simulation,Software,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3