Affiliation:
1. Самарский государственный технический университет, г. Самара, 443100, Россия
2. Samara State Technical University, Samara, 443100, Russian Federation
Abstract
Использование многочлена Тейлора второй степени при аппроксимации производных конечными разностями приводит ко второму порядку аппроксимации традиционного метода сеток при численном интегрировании обыкновенных дифференциальных уравнений второго порядка с переменными коэффициентами. В работе при исследовании краевых задач для обыкновенных дифференциальных уравнений третьего порядка с переменными коэффициентами рассмотрен предложенный ранее метод численного интегрирования, использующий средства матричного исчисления, в котором аппроксимация производных конечными разностями не использовалась. Согласно указанному методу, при составлении системы разностных уравнений может быть выбрана произвольная степень многочлена Тейлора в разложении искомого решения задачи в ряд Тейлора. Вычислена невязка и дана оценка порядка аппроксимации метода в зависимости от выбранной степени многочлена Тейлора при использовании четырехточечного шаблона. Теоретически выявлены закономерности между порядком аппроксимации матричного метода и степенью используемого многочлена Тейлора.
Установлено, что порядок аппроксимации пропорционален степени используемого многочлена Тейлора и меньше нее на две единицы.
При использовании пятиточечного шаблона предложена процедура построения фиктивного граничного условия, позволяющая построить замкнутую систему разностных уравнений матричного метода численного интегрирования.
Система разностных уравнений разбита на две подсистемы: в первую подсистему
вошли два уравнения, первое из которых содержит заданное значение производной в граничных условиях задачи, второе - вычисленное из фиктивного граничного условия значение; во вторую подсистему вошли оставшиеся разностные уравнения построенной замкнутой системы.
Вычислена невязка и дана оценка порядка аппроксимации метода в зависимости от выбранной степени многочлена Тейлора при использовании пятиточечного шаблона. Теоретически выявлены закономерности между порядком аппроксимации матричного метода и степенью используемого многочлена Тейлора.
Установлено следующее:
а) порядок аппроксимации первой подсистемы, второй подсистемы при четном значении степени используемого многочлена Тейлора и всей задачи пропорционален этой степени и меньше нее на две единицы;
б) порядок аппроксимации второй подсистемы при нечетном значении степени используемого многочлена Тейлора пропорционален этой степени и меньше нее на единицу.
Publisher
Samara State Technical University
Subject
Applied Mathematics,Mechanics of Materials,Condensed Matter Physics,Mathematical Physics,Modelling and Simulation,Software,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献