Affiliation:
1. Самарский государственный технический университет, г. Самара, 443100, Россия
2. Samara State Technical University, Samara, 443100, Russian Federation
Abstract
В работе использован известный матричный метод численного интегрирования краевых задач для неоднородных линейных обыкновенных дифференциальных уравнений с переменными коэффициентами, который позволяет удерживать произвольное число членов разложения в ряд Тейлора искомого решения или, что то же самое, позволяет использовать многочлен Тейлора произвольной степени.
Разностная краевая задача, аппроксимирующая дифференциальную краевую задачу, разбита на две подзадачи: в первую подзадачу вошли разностные уравнения, при построении которых не были использованы граничные условия краевой задачи; во вторую подзадачу вошли разностные уравнения, при построении которых были использованы граничные условия задачи.
Исходя из ранее установленных фактов дан и апробирован метод повышения порядка аппроксимации на единицу второй подзадачи, а следовательно, и всей разностной краевой задачи в целом. Перечислим эти установленные факты:
а) порядок аппроксимации первой и второй подзадач пропорционален степени используемого многочлена Тейлора;
б) порядок аппроксимации первой подзадачи зависит от чeтности или нечeтности степени используемого многочлена Тейлора. Оказалось, что при использовании степеней многочлена Тейлора, равных $ 2m{-}1$ и $ 2m$, порядки аппроксимации этих двух подзадач совпадают;
в) порядок аппроксимации второй подзадачи совпадает с порядком аппроксимации первой подзадачи, если во второй подзадаче отсутствуют заданные значения каких-либо производных, входящих в граничные условия;
г) наличие во второй подзадаче хотя бы одного значения производной той или иной степени, входящей в граничные условия, приводит к понижению порядка аппроксимации на единицу как второй подзадачи, так и всей разностной краевой задачи в целом.
Теоретические выводы подтверждены численными экспериментами.
Publisher
Samara State Technical University
Subject
Applied Mathematics,Mechanics of Materials,Condensed Matter Physics,Mathematical Physics,Modelling and Simulation,Software,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献