Performance Analysis of Graph theory-based Contrast Limited Adaptive Histogram Equalization for Image Enhancement

Author:

A. Manjunath1,Neelappa Neelappa2,Prakash Prakash2,Yatnalli Veeramma3,Bhusare Saroja S.3

Affiliation:

1. Research Scholar Department of Electronics and Communication, Govt. Engineering College Kushalnagar, Visvesvaraya Technological University, Karnataka, INDIA

2. Department of Electronics and Communication Engineering, Govt. Engineering College Hassan, Karnataka, INDIA

3. Department of Electronics and Communication Engineering, JSS Academy of Technical Education, Bengaluru, Karnataka, INDIA

Abstract

Nowadays, image enhancement has become a major area of research because of the development of applications that are based on vision.Several digital image processing systems employ such image enhancement strategies with the help of graph theory. As the visibility level in low contrast image features is very less,several image enhancement strategies have been introduced with spatial transformations to enhance image qualityfor improved visualization. Nowadays, image processing plays an important role in the analysis of a patient’s health status and has become extremely popular in medical areas for a wide range of clinical assessments. Generally, medical images contain several complex areas and thereby,few pre-processing approaches are applied to reduce the challenges that occur during different phases of the CAD system. Furthermore, because of external noise interferences, poor illuminating settings as well as other imaging device limitations, the clinical diagnosis becomes a challenging process and medical images do not provide important information for precise categorization. Medical images are available in a variety of applications such as computed tomography, Magnetic Resonance Imaging (MRI), mammography, chest X-ray (CXR), and many more. Only the pixel intensity variations between different areas as well as object boundary information are essential for categorization and must be enhanced simultaneously. As a result, the rate of classification in medical images and intensity are increased so that every object during the analysis can be easily identified. The main goal of any image enhancement process is to enhance the quality of the image by reducing noise and on other hand by using three different algorithms such as Luminance Modulation (LM), Gradient Modulation (GM), and Dynamic Histogram Equalization (DHE). These three algorithms are designed with the help of graph theory for effective preservation of edges, losses, and efficient smoothing and to preserve the basic information without any modifications. Image restoration is also referred to as image enhancement and it is concerned with the precise assessment of real images. Generally, the degradation process is not included in many of the image-enhancement approaches that are already existing. Furthermore, with the application of enhancement techniques, the degradation process for medical images results in some significant performance loss. Several techniques have been proposed and the technique which is examined in this research is image enhancement that is based on histogram which mainly concentrates on equalizing the histogram of values. Histogram Equalization (HE) possesses a few basic properties such as altering spatial patterns as well as intensity which in turn results in significant challenges in medical imaging. As a result,Contrast Limited Adaptive Histogram Equalization (CLAHE) is proposed in this work as a feasible approach for medical image analysis to address the problem. The suggested research work demonstrates that the intensity limiting image enhancement with histogram equalization detects the irregularities in dense mammograms with enhanced quality.

Publisher

World Scientific and Engineering Academy and Society (WSEAS)

Subject

Computer Science Applications,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3